Generating Rules for Advanced Fuzzy Resolution Mechanism to Diagnosis Heart Disease

نویسنده

  • Tarig Faisal
چکیده

6 ABSTRACT Fuzzy logic plays an important role in the field of medicine. Many diseases are diagnosed using fuzzy logic. Heart disease is the number one killer to the human community throughout the world. This study was conducted to diagnosis the heart disease among the patients. The components of this study are Fuzzification, Generating rules for Advanced Fuzzy Resolution Mechanism and defuzzification. Crisp values are transformed into fuzzy values through the fuzzification. Generating rules for Advanced Fuzzy Resolution Mechanism has five layers, each layer has its own nodes. In layer 1 rule are generated with the data to frame the new rules and output parameter are predicted. The proposed algorithm is tested with Cleveland heart disease dataset. Generating rules for Advanced Fuzzy Resolution Mechanism was developed using MATLAB Fuzzy Logic Tool Box. Transformation of fuzzy set into crisp values is called Defuzzification. The proposed algorithm can work more efficiently to diagnosis heart disease and also compared with earlier method using accuracy as metrics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Diagnosis of Coronary Artery Disease via a Novel Fuzzy Expert System Optimized by Cuckoo Search

In this paper, we propose a novel fuzzy expert system for detection of Coronary Artery Disease, using cuckoo search algorithm. This system includes three phases: firstly, at the stage of fuzzy system design, a decision tree is used to extract if-then rules which provide the crisp rules required for Coronary Artery Disease detection. Secondly, the fuzzy system is formed by setting the intervals ...

متن کامل

A Hybrid Model of Heart Anomalies Detection by Processing Heart Sounds

​Introduction: Different factors are effective in detecting heart abnormalities. The greater the number of these factors, the greater the uncertainty in the detection of heart abnormalities. In the uncertainty condition in response of prediction model, the fuzzy systems are one of the most effective methods for generating an acceptable response. Method: In this applied study, 3240 records rela...

متن کامل

A Hybrid Model of Heart Anomalies Detection by Processing Heart Sounds

​Introduction: Different factors are effective in detecting heart abnormalities. The greater the number of these factors, the greater the uncertainty in the detection of heart abnormalities. In the uncertainty condition in response of prediction model, the fuzzy systems are one of the most effective methods for generating an acceptable response. Method: In this applied study, 3240 records rela...

متن کامل

GENERATING FUZZY RULES FOR PROTEIN CLASSIFICATION

This paper considers the generation of some interpretable fuzzy rules for assigning an amino acid sequence into the appropriate protein superfamily. Since the main objective of this classifier is the interpretability of rules, we have used the distribution of amino acids in the sequences of proteins as features. These features are the occurrence probabilities of six exchange groups in the seque...

متن کامل

Modeling of self-assessment system of covid-19 disease diagnosis using Type-2 Sugeno fuzzy inference system

Due to the continuation of the pandemic of Coronavirus in the whole world, the number of deaths has reached over one million, based on the World Health Organization reports. Early diagnosis of the illness can be great assistance in order to break the chain of disease transmission. Nowadays, COVID-19 test kits are so limited in numbers, and expensive in terms of cost, which slows down the diagno...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013